Implementation Guide
IMPORTANT: All empirical analysis in this project is conducted at daily frequency using daily OHLCV bars from Polygon.io. No intraday, tick, or order-book data is used in the current experiment.
Getting Started
This guide provides step-by-step instructions for implementing and deploying the Cross-Asset Alpha Engine in your research or production environment. All features are computed from daily OHLCV bars, and execution is modeled at daily close-to-close with simple costs.
Prerequisites
System Requirements
- Python: 3.7 or higher
- Memory: Minimum 8GB RAM (16GB recommended)
- Storage: 5GB free space for data and cache
- CPU: Multi-core processor recommended for parallel processing
API Access
- Polygon.io API Key: Required for real market data
- Alternative: System can run with synthetic data for testing
Installation
1. Environment Setup
# Clone the repository
git clone <repository-url>
cd cross_asset_alpha_engine
# Create virtual environment
python -m venv .venv
# Activate virtual environment
# On macOS/Linux:
source .venv/bin/activate
# On Windows:
.venv\Scripts\activate
2. Install Dependencies
# Install core dependencies
pip install -r requirements.txt
# Install the package in development mode
pip install -e .
# Install Jupyter dependencies (optional)
pip install -r requirements-jupyter.txt
3. Configuration
# Copy environment template
cp .env.example .env
# Edit .env file and add your API key
POLYGON_API_KEY=your_polygon_api_key_here
4. Verify Installation
# Run tests to verify installation
python -m pytest tests/
# Test basic imports
python -c "from cross_asset_alpha_engine import config; print('Installation successful')"
Data Collection
Automated Data Collection
This script will: - Fetch real market data from Polygon API - Generate synthetic data as fallback - Validate data quality - Save data in efficient Parquet format
Manual Data Loading
from cross_asset_alpha_engine.data import load_daily_bars
from datetime import date
# Load specific symbols and date range
data = load_daily_bars(
symbols=['SPY', 'QQQ', 'AAPL'],
start_date=date(2023, 1, 1),
end_date=date(2025, 12, 6),
use_cache=True
)
Basic Usage Examples
1. Simple Alpha Generation
from cross_asset_alpha_engine import AlphaEngine
from datetime import date
# Initialize engine
engine = AlphaEngine()
# Load data
engine.load_data(
symbols=['SPY', 'QQQ', 'IWM'],
start_date=date(2023, 1, 1),
end_date=date(2025, 12, 6)
)
# Generate features
features = engine.create_features()
# Detect regimes
regimes = engine.detect_regimes(features)
# Train models
models = engine.train_models(features, regimes)
# Generate signals
signals = engine.generate_signals(models)
# Construct portfolio
portfolio = engine.construct_portfolio(signals)
# Run backtest
results = engine.backtest(portfolio)
print(f"Sharpe Ratio: {results['sharpe_ratio']:.2f}")
print(f"Max Drawdown: {results['max_drawdown']:.2%}")
2. Custom Feature Engineering
from cross_asset_alpha_engine.features import (
TechnicalFeatureEngine,
MicrostructureFeatureEngine,
CrossAssetFeatureEngine
)
# Initialize feature engines
tech_engine = TechnicalFeatureEngine()
micro_engine = MicrostructureFeatureEngine()
cross_engine = CrossAssetFeatureEngine()
# Generate features
tech_features = tech_engine.generate_all_features(data)
micro_features = micro_engine.generate_all_features(data)
cross_features = cross_engine.generate_all_features(equity_data, regime_data)
# Combine features
all_features = pd.concat([tech_features, micro_features, cross_features], axis=1)
3. Regime Detection
from cross_asset_alpha_engine.regimes import RegimeHMM
# Initialize HMM
regime_model = RegimeHMM(n_components=3)
# Prepare regime features
regime_features = data[['volatility_20d', 'vix_level', 'equity_bond_corr']]
# Fit model
regime_model.fit(regime_features.values)
# Predict regimes
regimes = regime_model.predict_regimes(regime_features.values)
regime_probs = regime_model.predict_proba(regime_features.values)
# Analyze regime characteristics
for regime in range(3):
regime_data = data[regimes == regime]
print(f"Regime {regime}: {len(regime_data)} observations")
print(f" Avg Volatility: {regime_data['volatility_20d'].mean():.2%}")
print(f" Avg VIX: {regime_data['vix_level'].mean():.1f}")
4. Portfolio Construction
from cross_asset_alpha_engine.portfolio import PortfolioConstructor
# Initialize portfolio constructor
portfolio_config = {
'max_position': 0.1,
'max_gross_exposure': 1.0,
'risk_parity': False
}
constructor = PortfolioConstructor(portfolio_config)
# Generate alpha scores (from your model)
alpha_scores = model.predict(features)
# Calculate volatilities
volatilities = data.groupby('symbol')['returns_1d'].rolling(20).std().groupby('symbol').last()
# Construct portfolio
positions = constructor.construct_portfolio(alpha_scores, volatilities)
print("Portfolio Positions:")
for symbol, position in positions.items():
print(f" {symbol}: {position:.2%}")
Advanced Configuration
1. Custom Model Configuration
# Random Forest configuration
rf_config = {
'n_estimators': 200,
'max_depth': 15,
'min_samples_split': 10,
'min_samples_leaf': 5,
'random_state': 42,
'n_jobs': -1
}
# Alternative models
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVR
models = {
'random_forest': RandomForestRegressor(**rf_config),
'logistic': LogisticRegression(penalty='l1', C=0.1),
'svm': SVR(kernel='rbf', C=1.0)
}
2. Risk Management Configuration
risk_config = {
'max_individual_position': 0.10, # 10% max per position
'max_gross_exposure': 1.0, # 100% gross exposure
'max_net_exposure': 0.05, # 5% net exposure (market neutral)
'max_sector_exposure': 0.30, # 30% max per sector
'max_drawdown_stop': 0.15, # 15% drawdown stop
'volatility_target': 0.12, # 12% annual volatility target
'rebalance_frequency': 'daily' # Daily rebalancing
}
3. Backtesting Configuration
backtest_config = {
'initial_capital': 1_000_000,
'commission_rate': 0.001, # 10 bps
'spread_cost': 0.0005, # 5 bps
'impact_coefficient': 0.1, # Market impact
'slippage_rate': 0.0005, # 5 bps slippage
'benchmark': 'SPY' # Benchmark for comparison
}
Jupyter Notebook Usage
1. Setup Jupyter Kernel
# Install Jupyter kernel for the project
python -m ipykernel install --user --name=cross_asset_alpha_engine --display-name="Cross-Asset Alpha Engine"
2. Launch Jupyter
3. Available Notebooks
- Complete System Analysis:
notebooks/Complete_System_Analysis.ipynb - Data Exploration:
notebooks/01_data_sanity_check.ipynb - Feature Engineering:
notebooks/02_feature_exploration.ipynb - Regime Detection:
notebooks/03_regime_detection_demo.ipynb - Backtesting:
notebooks/04_alpha_backtest_demo.ipynb - Execution Simulation:
notebooks/05_execution_simulation_demo.ipynb
Production Deployment
1. Environment Variables
# Production environment settings
export ENVIRONMENT=production
export LOG_LEVEL=INFO
export DATA_SOURCE=real_time
export RISK_CHECKS_ENABLED=true
export POSITION_LIMITS_ENFORCED=true
2. Monitoring Setup
# Performance monitoring
import logging
from cross_asset_alpha_engine.utils import setup_logger
# Setup production logging
logger = setup_logger(
name="alpha_engine_prod",
level="INFO",
file_output=True,
log_file="logs/production.log"
)
# Monitor key metrics
def monitor_performance(portfolio_returns):
current_sharpe = calculate_sharpe_ratio(portfolio_returns)
current_drawdown = calculate_max_drawdown(portfolio_returns)
if current_sharpe < 1.0:
logger.warning(f"Sharpe ratio below threshold: {current_sharpe:.2f}")
if current_drawdown > 0.10:
logger.error(f"Drawdown exceeds limit: {current_drawdown:.2%}")
3. Automated Execution
# Daily execution script
def daily_execution():
# Load latest data
data = load_latest_data()
# Generate signals
signals = generate_signals(data)
# Construct portfolio
portfolio = construct_portfolio(signals)
# Apply risk controls
portfolio = apply_risk_controls(portfolio)
# Execute trades
execute_trades(portfolio)
# Log performance
log_performance(portfolio)
# Schedule daily execution
import schedule
schedule.every().day.at("09:00").do(daily_execution)
Troubleshooting
Common Issues
1. API Rate Limiting
# Solution: Implement exponential backoff
import time
def api_call_with_retry(func, max_retries=3):
for attempt in range(max_retries):
try:
return func()
except RateLimitError:
wait_time = 2 ** attempt
time.sleep(wait_time)
raise Exception("Max retries exceeded")
2. Memory Issues with Large Datasets
# Solution: Process data in chunks
def process_large_dataset(data, chunk_size=10000):
results = []
for i in range(0, len(data), chunk_size):
chunk = data.iloc[i:i+chunk_size]
chunk_result = process_chunk(chunk)
results.append(chunk_result)
return pd.concat(results)
3. Model Performance Degradation
# Solution: Implement model monitoring
def monitor_model_performance(model, recent_data, threshold=0.05):
recent_performance = evaluate_model(model, recent_data)
baseline_performance = model.baseline_performance
if recent_performance < baseline_performance - threshold:
logger.warning("Model performance degraded, consider retraining")
return False
return True
Performance Optimization
1. Data Processing Optimization
# Use vectorized operations
import numpy as np
# Efficient feature calculation
def calculate_returns_vectorized(prices):
return np.log(prices / prices.shift(1))
# Parallel processing
from multiprocessing import Pool
def parallel_feature_generation(symbols):
with Pool() as pool:
results = pool.map(generate_features_for_symbol, symbols)
return pd.concat(results)
2. Model Training Optimization
# Use early stopping
from sklearn.ensemble import RandomForestRegressor
model = RandomForestRegressor(
n_estimators=1000,
warm_start=True,
oob_score=True
)
# Incremental training
for n_est in [100, 200, 300, 400, 500]:
model.n_estimators = n_est
model.fit(X_train, y_train)
if model.oob_score_ > best_score:
best_score = model.oob_score_
best_n_estimators = n_est
else:
break # Early stopping
Support and Resources
Documentation
- API Reference: Complete function and class documentation
- Examples: Comprehensive usage examples
- Tutorials: Step-by-step guides for common tasks
Community
- Issues: Report bugs and request features
- Discussions: Ask questions and share insights
- Contributions: Guidelines for contributing to the project
Professional Support
- Consulting: Custom implementation and optimization
- Training: Workshops and educational programs
- Maintenance: Ongoing support and updates
This implementation guide provides everything needed to successfully deploy and operate the Cross-Asset Alpha Engine in both research and production environments.